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Introduction of subject 
• Optics is the branch of physics which deals with the study of optical 

phenomena. Optics can be divided into two categories, which is Ray 
optics and Wave optics. Wave optics deals with the connection of 
waves and rays of light. It is used when the wave characteristics of light 
are taken in account. Wave Optics deals with the study of various 
phenomenal behaviors of light like reflection, refraction, interference, 
diffraction, polarization etc. It is otherwise known as Physical Optics. 

• Quantum mechanics is a physical science dealing with the behaviour of 
matter and energy on the scale of atoms and subatomic particles / 
waves. 

• It also forms the basis for the contemporary understanding of how 
very large objects such as stars and galaxies, and cosmological events 
such as the Big Bang, can be analyzed and explained. 

• Quantum mechanics is the foundation of several related disciplines 
including nanotechnology, condensed matter physics, quantum 
chemistry, structural biology, particle physics, and electronics. 
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Syllabus 
UNIT – I: Wave and Light Motion 

Waves: Mechanical and electrical simple harmonic oscillators, damped harmonic 
oscillator, forced mechanical and electrical oscillators, impedance, steady state motion 
of forced damped harmonic oscillator Non-dispersive transverse and longitudinal 
waves: Transverse Wave on a string, the wave equation on a string, Harmonic waves, 
reflection and transmission of waves at a boundary, impedance matching, standing 
waves and their Eigen frequencies, longitudinal waves and the wave equation for 
them, acoustics waves. Light and Optics: Light as an electromagnetic wave and Fresnel 
equations, reflectance and transmittance, Brewster’s angle, total internal reflection, 
and evanescent wave. 

UNIT – II: Wave Optics and Lasers 

Wave Optics: Huygens’ principle, superposition of waves and interference of light by 
wave-front splitting and amplitude splitting; Young’s double slit experiment, Newton’s 
rings, Michelson interferometer. Fraunhofer diffraction from a single slit and a circular 
aperture, the Rayleigh criterion for limit of resolution and its application to vision; 
Diffraction gratings and their resolving power. Lasers: Einstein’s theory of matter 
radiation interaction and A and B coefficients; amplification of light by population 
inversion, different types of lasers: gas lasers (He-Ne, CO), solid-state lasers (ruby, 
Neodymium), dye lasers; Properties of laser beams: mono-chromaticity. 
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UNIT – III: Introduction to Quantum Mechanics 

Wave nature of Particles, Time-dependent and time-independent Schrodinger 
equation for wave function, Born interpretation, probability current, 
Expectation values, Free-particle wave function and wave-packets, 
Uncertainty principle. Solution of stationary- state Schrodinger equation for 
one dimensional problems–particle in a box, particle in attractive delta-
function potential, square-well potential, linear harmonic oscillator. 
Scattering from a potential barrier and tunneling; related examples like alpha- 
decay, field-ionization and scanning tunneling microscope, tunneling in 
semiconductor structures. 

UNIT – IV: Introduction to Solids and Semiconductors 

Free electron theory of metals, Fermi level, density of statesin1, 2 and 3 
dimensions, Bloch’s theorem for particles in a periodic potential, Kronig-
Penney model and origin of energy bands. Types of electronic materials: 
metals, semiconductors, and insulators. Intrinsic and extrinsic  
semiconductors, Dependence of Fermi level on carrier-concentration and 
temperature (equilibrium carrier statistics), Carrier generation and 
recombination, Carrier transport: diffusion and drift, p -n junction. 
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Future scope 

The future of this subject in electrical 
engineering has broad spectrum analysis on 
nanotechnology, image processing, renewable 
energy sources, embedded systems, imaging, 
optoelectronics, optical fibers etc., Each and 
every new idea of electronics is making the life 
to move ahead. The future electrical engineering 
has major medical applications. 
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Unit I : Wave and Light Motion 
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Simple Harmonic Motion  

 x(t) = xm cos( t+)

Amplitude 

Phase Constant 

Angular Frequency 



Simple Harmonic Motion 

• Other variables frequently used 
to describe simple harmonic 
motion: 

 
– The period T: the time required 

to complete one oscillation. The 
period T is equal to 2p/.
 

– The frequency of the oscillation 
is the number of oscillations 
carried out per second:   
 

  n = 1/T 
  
 The unit of frequency is the 

Hertz (Hz).  Per definition, 1 Hz = 
1 s-1. 



Simple Harmonic Motion 
What forces are required? 

• Using Newton’s second law we can determine the force responsible 
for the harmonic motion: 
 

  F = ma = -m2x 
 
• The total mechanical energy of a system carrying out simple 

harmonic motion is constant. 
 

• A good example of a force that produces simple harmonic motion is 
the spring force: F = -kx.  The angular frequency depends on both 
the spring constant k and the mass m: 
 

   = √(k/m) 



Simple Harmonic Motion (SHM). 
The equation of motion. 

• All examples of SHM were derived from he 
following equation of motion: 

 

 

 

 

• The most general solution to the equation is 

 

 

d2x

dt 2
  2x

x t  Acos t   Bsin t   



Simple Harmonic Motion (SHM). 
The equation of motion. 

• If A = B 
 
 
 
 
 
 
 
 
 

 which is SHM.  
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Damped Harmonic Motion. 

• Consider what happens when in addition to 
the restoring force a damping force (such as 
the drag force) is acting on the system: 

 

 

 

• The equation of motion is now given by: 

 
F  kx  b

dx

dt
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Damped Harmonic Motion. 

• The general solution of this equation of motion is 
 
 

• If we substitute this solution in the equation of 
motion we find 
 
 

• In order to satisfy the equation of motion, the 
angular frequency must satisfy the following 
condition: 
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Damped Harmonic Motion 

• We can solve this equation and determine the 
two possible values of the angular velocity: 

 

 

• The solution to the equation of motion is thus 
given by 

SHM Term 
Damping Term 
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Damped Harmonic Motion. 
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The general solution contains a SHM term,  

with an amplitude that decreases as function of time 



Driven Harmonic Motion. 

• Consider what happens when we apply a time-dependent force F(t) 
to a system that normally would carry out SHM with an angular 
frequency 0. 
 

• Assume the external force F(t) = mF0sin(t).  The equation of 
motion can now be written as 
 
 
 
 

• The steady state motion of this system will be harmonic motion 
with an angular frequency equal to the angular frequency of the 
driving force. 

  

d2x

dt2
 0

2x  F0 sin t 



Driven Harmonic Motion. 
• Consider the general solution 

 

• The parameters in this solution must be 
chosen such that the equation of motion is 
satisfied.  This requires that 

 

• This equation can be rewritten as 
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Driven Harmonic Motion. 

• Our general solution must thus satisfy the following condition: 
 
 
 

• Since this equation must be satisfied at all time, we must 
require that the coefficients of cos(t) and sin(t) are 0.  This 
requires that 
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Driven Harmonic Motion. 

• The interesting solutions are solutions where A ≠ 
0 and  ≠ 0.  In this case, our general solution 
can only satisfy the equation of motion if 
 
 

 and 
 
 
 

• The amplitude of the motion is thus equal to 
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Driven Harmonic Motion. 

• If the driving force has a 
frequency close to the natural 
frequency of the system, the 
resulting amplitudes can be 
very large even for small driving 
amplitudes.  The system is said 
to be in resonance. 

• In realistic systems, there will 
also be a damping force.  
Whether or not resonance 
behavior will be observed will 
depend on the strength of the 
damping term. 



Waves 

• https://www.youtube.com/watch?v=7cD
AYFTXq3E 

 

https://www.youtube.com/watch?v=7cDAYFTXq3E
https://www.youtube.com/watch?v=7cDAYFTXq3E
https://www.youtube.com/watch?v=7cDAYFTXq3E
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transverse wave on a string 

• jiggle the end of the string to create a disturbance 

• the disturbance moves down the string 

• as it passes, the string moves up and then down 

• the string motion in vertical but the wave moves in the 
horizontal (perpendicular) direction transverse wave 

• this is a single pulse wave (non-repetitive) 

• the “wave” in the football stadium is a transverse wave 
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Slinky waves 

• you can create a 
longitudinal wave on 
a slinky 

• instead of jiggling the 
slinky up and down, 
you jiggle it in and out 

• the coils of the slinky 
move along the same 
direction (horizontal) 
as the wave 
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Harmonic waves  
• continually  jiggle the end of the string up and down 

• each segment of the string undergoes simple harmonic motion 
and the disturbance (wave) moves with speed v 

• the distance between successive peaks is called the 
WAVELENGTH, l(lambda) measured in m or cm 

l l

v 

snapshot of the 
string at some 

time 
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watching the waves go by 
• suppose we keep watching one segment of the string as the 

wave goes by and then make a plot of its motion 

• the time between the appearance of a new wave crest is the 
PERIOD of the wave, T 

• the number of wave crests that pass by every second is the 
wave frequency,  f = 1/T 

d
is

p
la

ce
m

en
t 

time 

T T 
sit at some x 
and watch 
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The golden rule for waves 
• the speed of propagation of the wave (v), the 

wavelength (l), and period (T) are related 

•  distance = speed x time  l = v T = v / f 

•  The wavelength = wave speed / frequency    

     or    v = l  f      (golden rule) 
•    Wave speed  = wavelength  frequency 

•  This applies to all waves  water waves, 
  waves on strings, sound, radio, light . .  

• This rule is important for understanding how       
musical instruments work 
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• A wave moves on a string at a speed of 4 cm/s 

• A snapshot of the motion reveals that the 
wavelength(l)  is 2 cm, what is the frequency ()? 

• v = l, so   =  v / l  =  (4 cm/s ) / (2 cm) = 2 Hz 

2 cm 2 cm 2 cm 

Example: wave on a string 
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Standing waves 

• At the NODE positions, the string does not 
move 

• At the ANTINODES the string moves up and 
down harmonically 

• Only certain wavelengths can fit into the 
distance L 

• The frequency is determined by the velocity 
and mode number (wavelength) 
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Vibration frequencies 

• In general, f = v / l, where v is the propagation 
speed of the string 

• The propagation speed depends on the 
diameter and tension  

• Modes 

– Fundamental:    fo = v / 2L 

– First harmonic:  f1 = v / L = 2 fo 



Longitudinal waves 

• Longitudinal waves have vibrations moving in the same 
direction that the wave is travelling in 

• Examples of longitudinal waves are: 
   Sound waves (in solids, liquids and gases) 
   Shock waves (e.g. seismic waves ) 
   A slinky (when plucked) 
    



Acoustic Waves 

Acoustic wave: A longitudinal wave that (a) consists of a sequence of pressure pulses 
or elastic displacements of the material, whether gas, liquid, or solid, in which the 
wave propagates. In solids, the wave consists of a sequence of elastic compression 
and expansion waves that travel though the solid.  

In acoustic wave devices acoustic waves are transmitted on a miniature solid 
substrate.  

In a crystalline solid a sound wave is transmitted as a result of the displacement of the 
lattice points about their mean position. The wave is transmitted as an elastic wave. 
(Elastic substance is able to return to its original shape or size after being pulled or 
pressed out).  

The term sound wave is sometimes confined to waves with the frequency falling 
within the audible range of the human ear, i. e. from about 20 Hz to 20 kHz. Waves of 
frequency greater than 20 kHz are ultrasonic waves. Waves of frequency 109–1013 Hz 
are called hypersonic waves. 

http://www.atis.org/tg2k/_sequence.html


Acoustic Waves 

There are various kinds of acoustic waves. Bulk acoustic waves are acoustic waves 
propagated through the bulk substrate material.  

If the motions of the matter particles conveying the wave are perpendicular to the 
direction of propagation of the wave itself, we have a transverse wave. 

If the motion of particles is back and forth along the direction of propagation, we have 
a longitudinal wave.  

Surface acoustic waves propagate along the surface of a substrate. There are some 
types of the surface acoustic waves. In the case of the Rayleigh waves particles in the 
surface layer move both up and down and back and forth tracing out elliptical paths. 
 
Acoustic waves 

Longitudinal and Transverse Wave Motion.htm




Acoustic Waves 

Let us consider that longitudinal vibrations are excited in a rod.  
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 Here s is displacement; σ  is stress. 



Electromagnetic Radiation 

• Light is electromagnetic radiation 

 

• Electromagnetic radiation is a fundamental 
phenomenon of electromagnetism, behaving 
as waves propagating through space, and also 
as photon particles traveling through space, 
carrying radiant energy. 



Electromagnetic Waves 

 



TE waves TM waves 
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Brewster’s angle 
or the polarizing angle 

is the angle p, at which RTM = 0:  
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Future Scope and relevance to industry 
 

Research based on: 
• https://www.scirp.org/journal/articles.aspx?searchCode=+Simple+Har

monic+Motion&searchField=keyword&page=1 
• https://www.researchgate.net/publication/320124852_A_Case_Study

_on_Simple_Harmonic_Motion_and_Its_Application 
• http://iopscience.iop.org/article/10.1088/1742-

6596/901/1/012123/pdf 
 
 

https://www.scirp.org/journal/articles.aspx?searchCode=+Simple+Harmonic+Motion&searchField=keyword&page=1
https://www.scirp.org/journal/articles.aspx?searchCode=+Simple+Harmonic+Motion&searchField=keyword&page=1
https://www.scirp.org/journal/articles.aspx?searchCode=+Simple+Harmonic+Motion&searchField=keyword&page=1
https://www.researchgate.net/publication/320124852_A_Case_Study_on_Simple_Harmonic_Motion_and_Its_Application
https://www.researchgate.net/publication/320124852_A_Case_Study_on_Simple_Harmonic_Motion_and_Its_Application
https://www.researchgate.net/publication/320124852_A_Case_Study_on_Simple_Harmonic_Motion_and_Its_Application
http://iopscience.iop.org/article/10.1088/1742-6596/901/1/012123/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/901/1/012123/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/901/1/012123/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/901/1/012123/pdf

